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Quantum Hamiltonian Complexity
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Local Hamiltonians

{‘3 Describe the interaction of quantum
particles (spins) that sit on a lattice

H=) hx

Y (W|H|) — the expectation of the energy of the state |t))

ﬁ H determines the time evolution of the system via the
Schrodinger equation: |
[¥(t)) = e (0))

ﬁ H determines the state of the system at thermal equilibrium
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Thermal equilibrium Thermal contact

def 1 _ 1 e
PT = Ee TH 7Y Tre1H
Gibbs partition
state function

def 1 iy
In the diagonalizing basis of H:  p1T = EZ’%WM@ /T

As T — 0, we get pr — [Yo) (Yo

[1)9) — the state with the minimal energy — the ground state

—> The ground state is central in determining the physics of the
system at 7' — 0

= The ground state is the global minimum of a set of local constraints

Much like a classical k-SAT system!
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Main questions in quantum Hamiltonian complexity:

What is the complexity of:

ﬁ Approximating the ground energy

ﬁ Approximating the Gibbs state at temperature T (and local
observables)

ﬁ Approximating the time evolution

Valuable insights into the

physics of the systems: _ _
Develop algorithms (classical
- structure of entanglement and quantum) to study these
- correlations systems

- phase transitions and criticality
- different phases of matter
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r Formal definition: \

* N particles sit on a D-dimensional lattice A

* Each particle lives in a d-dimensional Hilbert space (d = 2 unless
specified otherwise)

k-local Hamiltonian:

H = ZXcA hx |X| <k — nearest neighbors particles

® © o o HhXHSJ
hx——>"o @ o o .

A S hX:hX®]Irest

e o 0 o

IX Eigenvalues/Eigenvectors:

€0 <€ <€ < ... Vo), [¥1), [¥2), -

* Ground energy and Ground state: ¢y and |Q2) = |¢g)

\* Spectral gap: Ae def €1 — €o /
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Examples

, & L0y
Heisenberg model: :_Jzaz G+ B - ZUZ ij
<7'>] "t . I e
- o def . .
G- 0; = of o +ol -0l +of 05

Ising model w. transverse field: H =—J Z o;-0;+B Zaf}”
(.5 '
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Local Hamiltonians as quantum generalizations of k-SAT forumas

Associate: energy <> violations

(

Classical

Assignment:
s=(0,1,1,0,1,...)

local clause:
Cz' =21 VIV I3
(rejects (0,1,0))

total # of violations
of s

minimizing assignment

minimal # of violations

Classical
(quantum notation)

s) =10,1,1,0,1,...)

Projector (in standard-basis)
Qi = [010)(010]

energy of |s):

Es = (s|H|s) = >_;(s|Qils)

ground state of

H = Zz Qi
ground energy of
H = Z@ Qi
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The Local Hamiltonian Problem (LHP)

LHP
Gven a local Hamiltonian H = ) v hx, together with two \

numbers b > a such that b — a > ———=, decide whether:
poly(N)

YES instance: ¢y < a

\ NO instance: €y > b /

In other words: Find a 1/poly(/N) approximation of ¢

Central result: the "quantum Cook-Levin" theorem (Kitaev, '00)

The LHP with k¥ =5 is QMA complete (QMA = quantum NP)

9 /18



Classifying the landscape of local Hamiltonians

Kitaev's 5-local Hamiltonian:

e 0o 0 o ...
* e Physically
interesting

Hamiltonians

= - -
&“— ..~~~ --— ‘—'-- -.-...h
-~ S T TN -~ eas IS
o hard s\ 2 ,' l' ~\ o" y ~‘s
4 U - -

4 i i R ’ s Y ’ .
‘ Hamiltonians s 4 \ ; Hamiltonians s
’ . ’ . \‘ Y

"l (QMA) m \\\\ H (P,NP) L}
; Easy to show for: f'-l—) "1 i i Easy toshow for:

high k,d, D, 5o non-interacting,
S 1 ’ U :
“, no syminetries ", \ ';:, y \\ classical, S
KR L X e .. Mmany-symmetries ,¢
oo Lo’ o\ ~ '¢'

""" low k., d, D,
many symmetries
but still highly non-trivial
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Classifying the landscape of local Hamiltonians

Kitaev's 5-local Hamiltonian:

A e o o0 o0 ...
hysicall
e 2-local terestir
(Kempe, Kitaev & Regev '04) miltoniz
e 2-local on a 2D lattice o
4
(Oliveira & Terhal '05) i
NS
e 2-local on a line w. d =12 ) ‘\:\‘
(Aharonov et. al. '07) N
later improved to d = 8 i i
(Hallgren et al '13) ,:",'
!,
J
e Heisenberg model on 2D lattice p~3\.-4
(Schuch \& Verstraete '07)
w k, d,j
e C(lassification of all 2-local Symin
w. a fixed set of interactions ghly n
(Cubitt & Montanaro, '13)

e commuting Hamiltonians
[hx,hX/] =0w. k=2 and
any d, D
(Bravyi & Vyalyi '03)

e frustration-free Hamiltonians
w.d=2k=2
(Bravyi '06)

e gapped 1D is inside NP
(Hastings '07)

later proved to be in P
(Landau et al '13)




A (bold) conjecture

/The complexity of the gapped LHP (i.e., a spectral gap Ae = O (1))
and constant d, k, D is classical:

=> The 1D case isin P

\ —> The 2D,3D, ...cases are in NP /

ﬁ In 1D this has been proved by Landau, Vazirani & Vidick '13

ﬁ In higher D the problem is wide open.
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An intermediate outline

—=> Why gaps matter: AGSPs

= The detectability-lemma AGSP and the exponential decay
of correlations

=> The Chebyshev AGSP and the 1D area-law
—> Matrix-Product-states, and why the 1D problem is inside NP
=> 1D algorithms

—> 2D and beyond: tensor-networks, PEPs and possible directions
to proceed
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The grand plan

To show that a class of LHP is inside NP (or P), we can try to show that
the ground state |2) admits an efficient classical description:

1. |Q.) is described by poly (V) classical bits

2. (2:|A|Q.) can be efficiently approximated up to ||A||/poly(NV) for every
local observable A

3. [(Qe|A[2e) — (Q[A|Q)| < [|A]l/poly (V)

':1\> In such case we can simply use |(2.) as a classical witness for the
LHP problem since:

<Q|H|Q> — ZX<Q|hX’Q> = ZX<QCVLX|QC> — <Qc’H’QC>

local operators
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Locality in ground states: AGSPs

How can we find an efficient classical description?

product state general state
[61) ® |¢2) ® -+ @ |dn) D Ciyinliv. i)
21...1N
O (N) parameters 2N parameters

We need locality to bridge that gap

AGSP (Approximate Ground Space Projector)

o K|Q) =10)
An operator K is a §-AGSP if: = K = |Q){(Q| + O ()
o [K|QH)] <4

If K has a simple local structure then this could teach us about the

local structure of |2) 14 /18
/



Exponential decay of correlations

LA S Bt i S S 2 S Exp’ decay of correlations (Hastings '05)
G e S SR SE B N .
",," “ In the G.S. of a gapped system the correlation
oo-e-o (o o s  functiondecays exponentially

¢ 000 A0 0. 0 90

ookl vvsass  (QABIQ) = (QAIQNQIBIQ) + ||A] - |BI| - e~/
LEITTTTID eFotk

We will use an AGSP to prove this for gapped frustration-free systems:
e H=>.0Q; (projectors)
e (0;|Q2) = 0 (frustration freeness)

e Every Q; touches at most g = O (1) other ;s
(follows from constant D, k)
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The detectability lemma \
H=Y0 0 K= (I-Qu)-(I-Qu-1)--(I-Q)

For any 1), let |¢) ' K|¢), and e, & 1 (6[H|6).
1

\ Then: |[[¢[* < co/g® 1 1 /

Proof:

(Pl H[¢) = > (¢|Qil9)
(#1Qil0) = ($lQiQilo) = [|Qil9)[*

Qi) = |Qi(L— Qnr) -+ (T—Qs) - (I — Q)[¥)]

Assume [Q;, Q] # 0:

[T=Qum) Qi (I-Qj) - (I-Q)Y < [|Qi- (T—Qy) - (I—Q1)[¥)]
Qi Q5 - (I-Qj—1) - I=Q)Y) + Qi - T—Qj—1) - (L—Q1)[¥)]
<NQj - (I—Qj—1) - I= Q)Y + Qi - (T—Qj—1) - (I —Q1)[¥)]

<... < Z 1Q; - (IT—Qj-1)- (I = Q1))
§:(Qi,Q;]#0 16 /18



QA< Y Q- U= Q) T= QW (Z) S

J:[Q4,Q;1]#0
= (81Qilo) = Qi) > <g > Qs (1= Qjmn) -+ (I— Qu)IY)|P
7:[Q4,Q;1#0
= (p|H|9) <g* > Qs+ (I—Q;1) - (I— Q)|
_ J
HSOPIC e — P11 [T~ Qar) -+ (T - QD)) = g1 — ]

= esllo)” < g*(1 — ||¢l”)

1
2
= <
Conclusion:
When the system is frustration-free, K is a 6-AGSP with § = L

\/Ae/gz—i—l.
¢ Qi) =0 = K[Q) = (I-0Qn) - ([-Q1)[) =1[2)
e For |Q1), eqr > €1 = Ae. Therefore, by the D.L.:

1
KO <
K1) < e
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Exponential decay of correlations using the detectability-lemma AGSP

Even layer: Q- Qu Qs Qs
® > O O O C @ ...

Odd layer: @) 3 Qs Q7

odd layer even layer
7\ A\

O

N\
o o

K={-Q1) (I-Qs)---(1—Qo) (I Qa)---

(|

proportional to

T
i
T DO D D
[ T Y # of layers n
T DO D >
S T T
O D> > .
[ T Y distance ¢

!

2) by = O (A:g2)
(QAB|Q) = (QAK™B|Q) ¢
but: K" = [2)(Q] + 6" =~ [Q)(Q] + e~OU4e") L1y (0 + e~ 4/b

= ((QI4BIQ) ~ (@A) - (BI) + ||A] - | B]| - e~/ ]
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Area laws

R 0 00 000OCQOCOGOOOOEO®EO®OOO
Schmidt decomp":  |¥) :Z)\i|Li>®|L§) I
/L:]_ @ e 0O @ @000 000 0 @0 @ e

Entanglement entropy: soebposcofoccccocon

R
S —Trppinp, =S A2m(A2)  cinliiiiiiiiziie

i=1 cere P V).
{Z For general states, S.(v) ~ O (|L|) Volume law

|4)) must be described by dIOULD coefficients

{Z For special states, Sp (1) ~ O (|0L|) Area law

1) can be described using only d/®U9LD coefficients
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The area law conjecture

Conjecture
Ground states of gapped local Hamiltonians on a lattice satisfy
the area law
:LC..... @ o O::::
Intuitive explanation: °ee
Exponential Only the degrees of OO S b
decay |:> freedom along the cee Tt
of correlations boundary 0L are el
entangled e @@ o0 00 00000000 0 00
However,

So far, only the 1D case has been proved rigoursly (Hastings' 07)
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An AGSP-based proof for the 1D area-law

(w. Aharonov, Kitaev, Landau & Vazirani)

The 1D area-law: S, (Q) < const

Outline:

Our main

\_

D, 5)-AGSP
/—( )

. LC
has — hse e
o——o—o— -
>
J
“

L) ®|R) - K|L)® |R) = K2|L)® |R) — ... — |Q)

object:

o K|Q) =1Q)
o |K[QH)| <0
o K:ZileiL@)KiR

~N

J
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D,6)-AGSP
(—( )

Assume: o K|Q) =|Q) )
We have (D, §)-AGSP, and |L) ® |R) o [[K|QL)| <6

such that u = (L ® R|Q)| = O (1) ‘K:Z?:1Kz'j:®Kz'R

) = ulL) ® [R) + (1 - u2)"/2|0) \ J

Then: Applying K¢ with £ = O (log 11/ log §) will give a good approx to |2)
€0) = > AilLi) @ [Ry)

APA 1/poly(i) decay

<« Dli— /

I:)) SL(Q)~ O -logD) =0 (logD -log i/ logd)
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The bootstrapping lemma

Lemma

If there exists a (D, d)-AGSP with Dé? < 1/2 then there exists |L) @ |R) with
p= (L RIQ)| >

ﬁH
S

Proof:
Let |L) ® |R) be the product state with the largest overlap.

) © K|L)® |R) =2 M|L) ®|R;)  (Schmidt decomp’ of |¢))

Then on the one hand:

(QI)] < Y2y MHQUL: @ Ri)| < n Y2y X < /D35 X = /D - ||gl] - (1)
On the other hand:

L) ®|R) = plQ) @ |R)+ (1 — p)/2Q) = |¢) = p|Q)+ (1 —p?)/2K|Q5)

= [(Q[¢)] = p and [|¢]| < \/p? + 0

Plugging into (1), we get: p? > +(1 — Dé§?) > 5 n
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Good AGSPs are hard to find...

The detectability lemma ¢
AGSP ] ] ] ] ] ] G ] G S ]

A different approach: Use a low-degree polynomial of H: K det poly,(H)

Example:

14
poly,(#) = (1 - i)

H
def H—e a
K= (H_ ||H||—io)

Can we do better?
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Chebyshev-based AGSP

Chebyshev Polynomial
5~ ¢ 2V THT

Compare with:

poly,(z) = cos(qcos™

L)

(rescaled)




Other ingredients in the proof

We can truncate the upper spectrum of H to t, introducing only
an error of e~9® to the ground state and ground energy

5~ e 2IVTHT _y =205
<C:{ Schmidt rank:
One can write H? = 27{11 H,L-(L) 0% HZ.(R) with R = dO(\/G)

Taking all these points together, one constructs a
Chebyshev-based AGSP with D§? < %
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Constructing a Matrix-Product-State (MPS)

Q) = ML) @ RS\ e can

truncate
at each
cut

= oA [Ls) @ [RaD)

=S ALY @ |REY

Canonical MPS: (Vidal '03)

) = Z Ciy . in |1 - -

11...1N

.
. . R
X AR
2 REXUE RARX
~——
O ’
X AR
DS KRR
SR B
LA R4 *
P X

Iteratively express ]R[o‘f]> in terms of |j) ® ]R[ﬁjﬂ])

Ciroin = Z plli LRl L yl21 pBlie AR pl

102 o (X3 s34
a1,02,.

Taking only the first poly(/V) largest « indices: [Q) — [Q) = Q) + —polyl(N)

This is a poly(N) description. But is it also efficient? 9 /18



MPS as tensor-networks

Can we efficiently calculate (€2.|A[€).) for local observables?

Q)= D iinlinin) Gy = Y, Tl ALTEE A

x1,%x2,

e <poly(N)
Tensor-network: vertices <> tensors
edges < indices

connected edges <— contracted indices.

Ciy..in i Al 12l N\
m |:‘,> r—Oél o =Q= 1 Oél—T- Qg g == (2
’il ig ’i3 ?;4"- iN 11 19

Ciy..iny = r O ' O 1 O ? O - _?

11 12 13 14 IN
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Calculating with MPS

Suppose we want to calculate (Q2.|A|€).), where A defined on particles 7,8

Q) = ) & inlin. . in) Q| = > (in...inle]

21...1N 11...1N

def Cnye
A= Z (i7,i8|Aljz, s) - iz, is) Gz, Js| = ZA;ZEBS |7, i8) (J7, Js]

17,18 17,18
17,78 17,78

r—o—?— o ? o——?
i 8 IN

: : - _J :
QA2 = s A '
: : ~ ~ '

J7 J8 IN

L—o—l- 0—6—0 - 6
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Contracting a tensor-network: the swallowing bubble

- [

[ y j At every step of the
C ] algorithm the bubble

only cuts a constant
number of edges,

whose total indices
A span over at most a
polynomial range

A

{ -

Calculating a local observable of an MPS can be done efficiently!

.-’
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Summary of the 1D is inside NP argument

{Z When the system is gapped, at any cut along the chain
the Schmidt coefficients decay polynomially after : > O (De) = const

Iﬁ,} The system satisfies an area-law: S(€2) < const

We can truncate the Schmidt coefficients after poly(N) to
get a 1/poly(IN) approximation for |€2)

{Z From the truncation of the Schmidt coefficients we get a
polynomial MPS

{Z Expectation values of the MPS can be efficiently calculated

4

The MPS can be used as a classical witness to show that
1D gapped LHP is inside NP
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Algorithms for finding the g.s. of gapped 1D systems

<CZ Density Matrix Renormalization Group (DMRG) (White '92)
Equivalent for locally optimizing the MPS (Rommer & Ostlund '96)

ritl pll B ré ...

[ T[T Te=]

]__’[1]* 1—‘[2]* I“[S]* F[4]* "

(W|H|p) =Y 5 (¥|hx|) quadratic in T
<X TEBD (vidal '03)
Approach the ground state by applying e~ ™H to an MPS
e~ ) — Q)

At every step the SR of the MPS increases, hence we truncate it
to keep the MPS small
<CZ Dynamical programing (Landau, Vazirani & Vidick '13)

A random algorithm that rigrously converges to the g.s. with high
probability. Based on applying Dynamical Programming to MPSs 14 /18



2D and beyond

We cannot hope for an efficient problem because already the classical
problem (SAT in 2D) is NP hard

However, by finding an efficient classical representation we may
revolutionize the field like DMRG did in 1D

<CZ Current approaches: use 2D tensor networks such as PEPS

(a) (b) PEPS
MPS
? ? ? ? (taken from Orus '13)

15/18



The difficulties in 2D

(a) (b) PEPS

MPS
ol ol o
Area-law
states

PEPS
states

general
states

— Gapped

g.s.
(conjecture)

PEPS states naturally satisfy the 2D area-law.
However, the 2D area-law proof is still missing...

A

<C:{ Even if we had a 2D area-law proof, it would still not prove that
the g.s. is well-approximated by a PEPS

Even if the g.s. was known to be approximated by a PEPS, it is
still not clear how to efficiently compute local observables with

PEPS

W
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But there's hope general

states

Area-law
states

PEPS
states

Gapped
— g.s.
(conjecture)

ﬁ A 2D area-law proof would (if found) surely teach us much
more about the structure of the g.s. than merely the area-law

itself.

<t{ Contracting a PEPS exactly is #P hard. However, we are not
fully using the fact that we are interested in very special PEPS:
Those that represent gapped g.s. Some numerical evidences
suggest that this can be done efficiently (Cirac et al '11)

There is much more structure (i.e., exp' decay of correlations),
which can be used to prove efficient contraction.
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