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Local Hamiltonians

Describe the interaction of quantum 

particles (spins) that sit on a lattice
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Thermal equilibrium

Heat bath at

temperature T

Thermal contact

partition

 function

In the diagonalizing basis of H:

Much like a classical k-SAT system!

Gibbs

state
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Main questions in quantum Hamiltonian complexity:

What is the complexity of:

Approximating the ground energy

Approximating the Gibbs state at temperature T (and local

observables)

Approximating the time evolution 

Valuable insights into the 

physics of the systems:

- structure of entanglement

- correlations

- phase transitions and criticality

- different phases of matter

Develop algorithms (classical

and quantum) to study these 

systems
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Formal definition:
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Examples

Heisenberg model: ...
......

...

..
.

..
.

..
.

..
.

Ising model w. transverse field:



8 18/

Local Hamiltonians as quantum generalizations of k-SAT forumas

Classical Classical

(quantum  notation)
Quantum
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The Local Hamiltonian Problem (LHP)

In other words:

LHP

Central result: the "quantum Cook-Levin" theorem (Kitaev, '00)

The LHP with              is QMA complete (QMA = quantum NP)
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Classifying the landscape of local Hamiltonians

Kitaev's 5-local Hamiltonian: 
...
...

hard 

Hamiltonians

(QMA)

Easy to show for:

easy 

Hamiltonians

(P,NP)

Easy to show for:

non-interacting,

classical, 

many-symmetries

Physically

interesting

Hamiltonians
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Classifying the landscape of local Hamiltonians

Kitaev's 5-local Hamiltonian: 
...
...

hard 

Hamiltonians

(QMA)

Easy to show for:

easy 

Hamiltonians

(P,NP)

Easy to show for:

non-interacting,

classical, 

many-symmetries

Physically

interesting

Hamiltonians(Kempe, Kitaev & Regev '04)

(Hallgren et al '13)

(Aharonov et. al. '07)

(Oliveira & Terhal '05)

(Cubitt & Montanaro, '13)

(Schuch \& Verstraete '07)

(Bravyi & Vyalyi '03)

(Bravyi '06)

(Hastings '07)

(Landau et al '13)
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A (bold) conjecture

In 1D this has been proved by Landau, Vazirani & Vidick '13

In higher D the problem is wide open.
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An intermediate outline

Why gaps matter: AGSPs

The detectability-lemma AGSP and the exponential decay 

of correlations

The Chebyshev AGSP and the 1D area-law

Matrix-Product-states, and why the 1D problem is inside NP

1D algorithms

2D and beyond: tensor-networks, PEPs and possible directions

to proceed
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The grand plan

To show that a class of LHP is inside NP (or P), we can try to show that

the ground state          admits an efficient classical description:

In such case we can simply use         as a classical witness for the

LHP problem since:

local operators
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Locality in ground states: AGSPs

How can we find an efficient classical description?

product state general state

If      has a simple local structure then this could teach us about the

local structure of 

AGSP (Approximate Ground Space Projector)

We need locality to bridge that gap
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Exp' decay of correlations (Hastings '05)

In the G.S. of a gapped system the correlation 

function decays exponentially

Exponential decay of correlations

We will use an AGSP to prove this for gapped frustration-free systems: 



16 18/

Proof:

The detectability lemma
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Conclusion:
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Exponential decay of correlations using the detectability-lemma AGSP

...
Even layer:

Odd layer:

...

...

...

...

...

...

...

...

...

...

...
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Area laws

Schmidt decomp': 

Entanglement entropy:

Volume law

Area law
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The area law conjecture

Conjecture

Ground states of gapped local Hamiltonians on a lattice satisfy

the area law

Intuitive explanation:

Exponential 

decay 

of correlations

However,

So far, only the 1D case has been proved rigoursly (Hastings' 07)

Only the degrees of 

freedom along the 

boundary        are 

entangled
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An AGSP-based proof for the 1D area-law 
(w. Aharonov, Kitaev, Landau & Vazirani) 

...
...The 1D area-law:

Outline:

AGSP

Our main object:
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AGSP

Assume:

Then:
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The bootstrapping lemma

Lemma

Proof:

Then on the one hand:

On the other hand:

(1)

Plugging into (1), we get:
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Good AGSPs are hard to find...

...

...

The detectability lemma

 AGSP

Only one projector increases the S.R., but still...

A different approach:

Example:

Can we do better?
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Chebyshev-based AGSP

(rescaled)

Chebyshev Polynomial

Compare with:
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Other ingredients in the proof

Schmidt rank:

Taking all these points together, one constructs a 

Chebyshev-based AGSP with 
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Constructing a Matrix-Product-State (MPS)

...

...

......

we can

truncate

at each 

cut

Canonical MPS: (Vidal '03)

This is a poly(N) description. But is it also efficient?
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MPS as tensor-networks

...

vertices  ↔  tensors

...

...

connected edges ↔ contracted indices.

Tensor-network:

edges ↔ indices
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Calculating with MPS

......

......
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......

......

......

......

......

......

......

......

Contracting a tensor-network: the swallowing bubble

At every step of the 

algorithm the bubble

only cuts a constant 

number of edges, 

whose total indices

span over at most a

polynomial range

Calculating a local observable of an MPS can be done efficiently!
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Summary of the 1D is inside NP argument

The MPS can be used as a classical witness to show that 

1D gapped LHP is inside NP 
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Algorithms for finding the g.s. of gapped 1D systems

Density Matrix Renormalization Group (DMRG) (White '92)

Equivalent for locally optimizing the MPS (Rommer & Ostlund '96)

...

...

TEBD (Vidal '03)

Dynamical programing (Landau, Vazirani & Vidick '13)

A random algorithm that rigrously converges to the g.s. with high 

probability. Based on applying Dynamical Programming to MPSs
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2D and beyond

We cannot hope for an efficient problem because already the classical

problem (SAT in 2D) is NP hard

However, by finding an efficient classical representation we may

revolutionize the field like DMRG did in 1D

Current approaches: use 2D tensor networks such as PEPS

(taken from Orùs '13)
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The difficulties in 2D

PEPS states naturally satisfy the 2D area-law. 

However, the 2D area-law proof is still missing...

Even if we had a 2D area-law proof, it would still not prove that 

the g.s. is well-approximated by a PEPS

Even if the g.s. was known to be approximated by a PEPS, it is 

still not clear how to efficiently compute local observables with 

PEPS

general

states

Area-law

states

PEPS 

states

Gapped

g.s. 

(conjecture)
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But there's hope general

states

Area-law

states

PEPS 

states

Gapped

g.s.

(conjecture)

A 2D area-law proof would (if found) surely teach us much

more about the structure of the g.s. than merely the area-law 

itself.

Contracting a PEPS exactly is #P hard. However, we are not

fully using the fact that we are interested in very special PEPS:

Those that represent gapped g.s. Some numerical evidences

suggest that this can be done efficiently (Cirac et al '11)

There is much more structure (i.e., exp' decay of correlations), 

which can be used to prove efficient contraction.
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Thank you !


